RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2013

FIRST YEAR

INDUSTRIAL CHEMISTRY (Honours)

Date : 14/12/2013 Time : 11 am – 3 pm

Paper : I

Full Marks : 75

[Use separate Answer Book for each group]

<u>Group – A</u>

Unit – I

(Answer any three questions)

- 1. a) Calculate the specific rotation of (+) glyceraldehydes, if a solution containing $2 \cdot 0g/10ml$ is placed in dm polarimetre tube and its observed rotation at 25°C using sodium D lime is $+1 \cdot 74^{\circ}$.
 - b) Predict E or Z nomenclature of the following compounds :

- c) Draw Fischer projection of D(-) mandelic acid.
- 2. a) What will be the fate of reaction if solvent of the following reaction have been changed from methanol to N, N-dimethyl formamide?

 $CH_3I + N_3^- \rightarrow CH_3N_3 + I^-$

b) The compound below exists 100% in keto form. Explain why?

- c) Give IUPAC name of the following compound : H₃CCOCH₂COOH
- 3. a) Arrange the following in order of their increasing acid strength. Justify.

- b) How can E1cB pathway be distinguished from the kinetically indistinguishable E2 pathway? [3+2]
- 4. a) Arrange the following carbocations in order of their increasing stability with reasons.

$$\begin{array}{ccc} H_2C = CH - CH_2 & , & H_2C = C - CH_3 & , & & & \\ & & (I) & (II) & (III) & & \\ \end{array}$$

- b) Which one is more acidic between phenol and benzoic acid? —Explain. [3+2]
- 5. a) Justify the trend in pK_a values for the following acids :

	pKa ₁	pKa ₂
Maleic acid	1.92	6.04
Fumaric acid	3.03	4.44

b) Give R/S configurational nomenclature of the following molecule.

$$HO \xrightarrow{CO_2H} H$$

$$HO \xrightarrow{H} OH$$

$$CO_2H$$

$$(1)$$

[2+2+1]

[2+2+1]

Unit – II (Answer <u>any four</u> questions)		
6.	a)	From de Broglie's concept derive the Bohr's postulate of quantisation of angular momentum for an electron.
	b)	State Hiesenberg's uncertainty principle.[3+2]
7.	a)	Predict the structure and bonding of the following molecules in the light of VBT.(i) BF₃ (ii) PCl₅
	b)	Arrange the following species in order of their increasing bond dissociation energy. Give reasons. O_2, O_2^+, N_2^+
	c)	Write down the sets of quantum numbers for the electrons present in the ground state of Li^+ ion. [2+2+1]
8.	a) b)	Discuss the shape of 3p _y orbital. What are the differences between a Bohr atom and a wave mechanical atom? [3+2]
9.	a)	Deduce Henderson's equation for a buffer made from a weak acid and its salt, (say, citric acid & sodium citrate)
	b)	Calculate the pH of a solution containing $0.1(M)$ ammonia and 0.2 (M) ammonium chloride. pK _b for ammonia is 4.7 . [3+2]
10.	a) b)	Explain how will you choose an indicator in an acid-base titration. Calculate the pH of a 0.01 molar solution of sodium acetate at 25° C.
		$[k_a \text{ for acetic acid} = 1.8 \times 10^{-5}] $ [3+2]
11.	a) b) c)	Which of the following electronic arrangements in p-orbitals is not correct? $ \begin{array}{c c} \hline \uparrow \uparrow \\ I \\ I$
		Unit – III
(Answer <u>any three</u> questions)		
12.	a) b)	Discuss the causes of deviation of real gases from ideal hebaviour.
10)	The are these accounted for in the valuer waars gas equation. [2+3]
13.	a)	For a certain gas $T_C = 304.2K$, $P_C = 72.8$ atm. Calculate the vander Waals constants 'a' and 'b' for the gas.
	b)	Give an example in each of the cases where—(i) $dG = 0$, ds is greater than zero and (ii) $dG < 0$, $dS < 0$ [3+2]
14.	a)	Prove that $\left(\frac{dV}{dT}\right)_{P} = -\left(\frac{dS}{dP}\right)_{T}$
	b)	Calculate the most probable velocity from one dimensional distribution. [2+3]
15.	a)	Work done during an expansion is greatest when the process is carried out reversibly. Explain with the help of $P - V$ diagram.
	b)	An expansion is carried out from a state V_1 to V_2 isothermally and reversibly at a temperature T. Derive an expression for the total amount of work. [3+2]
16.	a)	From the definition of entropy, show that for any change of state, $\Delta S = C_v \ell n \frac{T_f}{T_i} + R \ell n \frac{V_f}{V_i}$

[2+2+1]

c) Trichloroacetic acid is stronger than acetic acid. Explain why.

(2)

- b) When do you call a system to be (i) in thermodynamic equilibrium and (ii) in steady state.
- c) State whether the following are state function or path function (i) Internal energy (ii) Heat. [2+2+1]

Unit – IV

(Answer <u>any one</u> question)

- 17. a) Calculate the solubility of Mg(OH)₂ in moles/lit. Given, the solubility product of Mg(OH)₂ is 5×10^{12} .
 - b) Explain how can you estimate CH₃COOH and HCl from their mixture using conductometric method of titration.
- 18. a) On adding sodium hydroxide to an aqueous solution of <u>p</u>-nitrophenol, the <u>colour</u> deepens. Explain why.
 - b) $v_{C=0}$ stretch for the following compounds are given below. Justify the data.

 $v_{C=0}$

<u>Group – B</u>

(Answer <u>any four</u> questions)

- 19. Explain in short at least 5 points, which a boiler operator has to ensure, for safe and efficient operation of the boiler. [5]
- 20. To move a boat uniformly along a canal at a given speed, requires a resultant force R = 400 Kg. This is accomplished by two horses pulling with force P and Q on two ropes as shown below. If the angles that the two ropes make with the axis of the canal are $\beta = 30^{\circ}$ and $\gamma = 20^{\circ}$ what are the corresponding tensions in the ropes?

21. Determine analytically the axial forces in the bars of the plane truss loaded and supported as shown in the figure. [5]

[2+3]

[5]

22. For the simple beam in the figure, evaluate the shear fore and bending moment at a section just to the left of the point of application of 2000 Kg load. [5]

- 23. a) Calculate the membrane stress σ_1 and σ_2 for the thinwalled spherical vessel of radius 'r' and wall thickness 't' if it is subjected to uniform internal pressure of intensity 'p'. [2]
 - b) Calculate the safe internal gas pressure 'p' for a spherical pressure vessel made of thin plate 0.25 cm thick if the mean diameter of the sphere is D = 600 cm and the allowable stress in tension is 900 Kg/cm². [3]

[2]

[3]

- 24. a) Draw the stress-strain diagram of a prismatic steel bar which is stressed beyond its proportional limit.
 - b) Discuss in short the various features of this curve.

80參Q